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QUALITATIVE INVESTIGATIONS OF PLANE AND SIMILAR MOTIONS 
OF A SOLID ABOUT A FIXED POINT* 

H.M. YAWA 

The plane motion of a solid about a fixed point in a conservative force field is 
investigated. The motion is defined by a single second order differential equation. 
Stability of plane motions is investigated in the first approximation. Similar to 
plane periodic motions of a solid are analyzed by the Poincare method of small para- 
meter. 

The equations of motion of a solid about a fixed point in a conservative force fieldthat 
admits the areas integral were reduced in /l/ to the differential equation 

Y’ 
(1 + y”)y. 

= & -& i- -$ (U” - U,y') (1 + y I)-‘! 
” 

da 
2= 

(l-“na’))‘(l-k%*)(l-a*) * 

(1) 

y=l/f[ dp 
0” Cl+ mc’) f/cl -k’P) (i -P') 

a=~~(i-~o'-~'"p')l/(~-~')(i+~p*)z: 

[A-B+C-z(A-f3)a’-~2(H-c)p*J 

U = B (1 - k’u’ - k’*p’) [h + U,, - & (1 -ma) (1 -e mpz)l 

k’&k’=_+$ A-B 
?I=7 m=B--C 

C 

where A,B,C are the principal moments of inertia of the body, h is Jacobi's constant, f is 
the areas constant, and o and p are elliptic coordinates related to directional cosinesofthe 
field axis of symmetry with respect to the body principal axes of inertia by formulas 
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and u0 is the force function of the initial force field. We shall investigate the stability 

of one of the simple periodic motions of the body, namely, its plane motion. 
'The plane motion of the body is understood to be a motion at variable angular velocity 

about one of its principal axes of inertia which is constantly maintained in a horizontal 

position. Motion of the body is plane y(z) = 0 (about axis c) then, when the areas constant 
f = 0 and variations of the force function satisfy the condition (alr/aY),o~O. The nature of 
motion depends on Jacobi's constant h- 

Let us consider the orbital stability of the representative point trajectory intheplane 

=Y ’ first, for a fixed h. If f =I), Eq.(l) of that trajectory is of the form 

2Uy" *(Cl,y' - U,) (I + Y'? = 0 (2) 

We shall investigate stability of the zero solution of Eqs. (2) in the first approximation. 
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Expanding function U in series in powers of y and retaining in Eq.(2) only terms linear in 
y, y', we obtain 

2u”y” + v,y - V,,“y = 0 

u” = V (I, O), v3, = V, (z. O), u,* = VI!, (5, ?d Iy=o 

or what is the same 

Introducing the new vaxiable u by formula & =&/i/p, we reduce the last equationtothe 

form 

It can be shown that for all admissible values of Jacobi's constant except the bifurca- 
tional, p(u) is aperiodic function of period 

where the integral is taken over the interval that corresponds to one turn in the rotary 
motion (or to a complete oscillation in the case of libration). 

The solid body can perform plane motions y(z) = 0 in a Newtonian gravitation field when 
its center of mass lies in the equatorial plane of the central ellipsoid of inertia. We then 
have 
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where a,6 are the products of the body mass by the coordinates of the center of mass relative 
to the principal planes, and g is the gravitation force at distance R from the center. 

Stability of the zero solution of ES.(~) in the first approximation can be assessed by 
applying to Hill's equation (3) the criterion of boundedness of solutions of linear differ- 
ential equations with periodic coefficients /2/. 

Let us also consider some simple cases of motion in a homogeneous gravitational field. 

lo. A - B, 6 = 0. 

aj Rotary motion (h> a). We have 

2a 
a=-l-i-2sns(u,v), +=-, 

h-i-a 

Using the notation a ~2Cj.4 we reduce Eq.(3) to the form of Lam& equation 

(5) 

We shall try to elucidate the pattern of stability and instability in the plane of para- 
meters av. As h increases from a tom at fixed CIA, v decreases from 1 to 0 under the condi- 
tion O<C<B =A, O<a<2. It was shown in /2/ that the domains of stability 0, and in- 
stability & are separated by lines n,+,&- whose equations define the distribution of eigen- 
values of the boundary value problem of periods 2K,4K. We have, for instance, /3/ 
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for II,;, Curves 1-I,* pass through point (s,O). Equation (7) implies that o =2 belongs to 
ir,-. It can be also shown /4/ that curves II,* have at point (s,O) a contact of not less than 
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first order with the line a =s. The stability domain 0, (s = 0,l) contains on axes a the 
segment s<a<s +I. These properties are shown in Fig.1. The following cases have a part- 
icular effect on stability pattern. 

Kovalevska’S top (a = 1). plane rotation of such body is stable in the limit case of 
v = O(h = oo), while instability occurs at finite but arbitrarily large values of h. 

The case of A =4C. We shall show that for this body the representative point (r/,,v) 
always belongs to Oo. Indeed, Eq.(S) assumes the form 

(8) 

and for O,<v< 1 has the limited general solution 

where C,,C, are arbitrary constants. 

(b) Libration motion &<a. In this case 

When O<C<A and v is small we have a single stability domain O. which contains the 
segment O< a<% Its right-hand boundary n r is tangent to line a = 2 at point v = 0. Un- 
like the case of rotary motion the Kovalevska top has no resonance properties at small oscil- 
lations near the lower equilibrium position. The Goriachev-Chaplygin top retains that 
property, since in both cases, that of rotary and libration motions Eq.(8) represents the first 
approximation. 

2'. B = C, a = b = 0. To investiage the stability of traject- 

Fig.1 

rokation by inertia about axis 
aribtrarily small distance between the center of mass and the sup- 
port point. 

b) In the case of libration motion small plane oscillations 
position are stable in the absence total dynamic stability. 

3'. Let us now consider the motion y =0 of a dynamically 
c = 0. We apply the Joukowski criterion /2/. The motion belongs 

about the lower equilibrium 

nonsymmetric body A > u> C. 
to the S-th stability domain 

when condition 
s'n? < Trp (U) $ (s f 1)'s' 

where s is an integer, is satisfied. 
In the case of rapid rotation we have two stability domains 

s&-l/ @-;-) +o(?LEp)<s+l, s=o,l 

The motion is stable for all admissible points of the plane (B/A,C/A), except the point in 
the neighborhood of curves C = 0,B y C.h(A - C)(B - c) = AB. A similar result is obtained in 

the case of rapid rotation about axis A. Curves A =B+C,A -B,4(A-_.(A--R)-RC are 
exceptional. 

So far we dealt with conditional stability, i.e. stability of trajectories at fairly 

small perturbations of initial conditions which do not affect /c and the zero area constant. 
In fact the first requirement is immaterial, since the trajectory remains stable at such per- 
turbations of Jacobi's constant for which point (a,~) remains in the initial stabilitydomain. 

In the instability domains H, of the linear equation (3) the zero solution of the non- 
linear equation (2) is unstable. To establish the stability of zero solution of thenonlinear 
equation in danains 0, it is necessary to consider the effect of higher order terms. 



Investigation of plane motions of a solid 457 

Let us now pass to the proof of existence of a denumerable set of classesofalmostplane 
periodic rotations of a heavy solid about a fixed point. We assume that the solid differs 

only slightly from a dynamically symmetric body and that its center of mass is fairly close 

to the principal axis of inertia. We take y -O(p =q =i y3 = 0) with A = B, b = c = 0, f = 0 
as the generating solution, and introduce the small parameter p in such a way that b,c, f, 

k = ((A - B) (A - C’) I”3 vanish as p approaches zero. We set 

b/b, = c/c, = f/f, = k = p 

where b,, cl, fi are finite constants. 
We apply the Poincare method of the small parameter for deriving a periodic solution of 

Eq.(l) in the form of series 

+% (9) 

which becomes trivial when p = 0. 
Substituting (9) into Eq.(l.l) we obtain for {YI) the system of equations 

(101 

where (PSI are algebraic functions of u and polynomials in Y,-~, . . . . y,, y:_,,...,y,‘, and the zero 
subscript indicates the value of function for 11 = 0. 

As shown in /2/, system (10) after a suitable substitution of the independent variable, 
reduces to a system of uniform inhomogeneous Lam6 equations 

@&+ ja(a;~)--a(a+I)v’sn’(u,v)] y,=P, 

a = 2CfA. va = 2al(h + a) 

(11) 

where the coefficients at Ya and functions p are periodic functions of u of period 2K(v). 
If with s = 1 it is possible to select the cdnstants of integration so as to have the solut- 
ion unique and periodic of period QK(q is an integer), it is then possible to construct in 
a unique manner all remaining y, (S = 2,3,...) of the same period. 

Such procedure can be always carried out in the case when the equation in variationsdoes 
not admit even a single periodic solution of the same period as that of the sought solution/5/ 

or, what is the same, when the pair of numbers (a,~) does not satisfy the equation of eigen- 
values for the Lame' function of period 2qK. 

The last equation was investigated in somewhat greater detail /6,7/ for 9 = 1,2,4, and 
generally defines curve %I in the domain of variation of parameters O<a<Z,Ogv<i . The 
combination of curves Vp(q=f,2,...) constitutes in this domain a set of measure zero. This 
proves that for almost all C/A. (h>a) there exists a denumerable set of classes of periodic 
solutions of Eq.(l) of period of the form 2q(q is an integer) which reduces to solution ~'0, 
and when P=O are absolutely convergent for fairly small p. These classes are generally dif- 
ferent. The trajectory of period 2qK closes on the ellipsoid of inertia after 4 (g/2) turns 
when q is odd (even). 

Examples. lo. Periodic trajectories of period 2K. The equations of eigenvalues 
were given in Sect.1. If parameters e.v do not satisfy any of these equations, there exists 
a class of periodic solutions of period 2K of the indicated type. 

2O. The case Of A =B=dC. For the generating solution, as shown above, the general 
solution of the equation in variations is periodic of period 8K. 
solutions of periods 2K, 4K. 6K exist. 

Three classes of periodic 
Solutions of higher period are consistent with these 

solutions by virtue of periodicity of Eq.(ll) and of the general solution of the equation in 
variations. This reasoning is insufficient for assessing the existence in this case of solu- 
tions of period SK. 

For the generating solution z= 0 (a = b = 0, f=o) to which corresponds rotation about the 
highest inertia axis A we have a system similar to (11) in I$ with parameter OL= ZA/C. 

To the obtained solutions corresponds a periodic variation of 
generally, 

Euler's angles 8,~ 
an almost periodic motion relative to the precession angle. 

and, 

The author thanks V.G. Demin for his assistance in this work. 
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